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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

TRANSONIC INVESTIGATION AT LIFTING CONDITIONS

OF STREAMLINE CONTOURING IN THE SWEPTBACK-WING—FUSELAGE

JUNCTURE IN COMBINATION WITH THE
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TRANSONIC AREA RULE

By William E. Palmer, Robert R. Howell,
and Albert L. Braslow

SUMMARY

An investigation has been made in the Langley transonic blowdown
tunnel at Mach numbers between 0.8 and 1.3 to determine the possible drag
reductions at angles of attack to 12° due to contouring the fuselage of a
hSO sweptback-wing—fuselage combination such that the wing-fuselage junc-
. . ture conformed approximately to the surface streamline shape that would
: exist over a wing of infinite span-at a given 1ift coefficient. The lon-
gitudinagl distribution of cross-sectional area of the four configurations
tested conformed to the transonic area rule. One config ition had an
axisymmetric fuselage and the other three fuselages were streamlined for
lift coefficients of 0, 0.1, and 0.4. Lift, drag, and pitching-moment
characteristics were determined at a Reynolds number of approximately

3 X 106 based on the wing mean aerodynamic chord.

The results of the investigation indicate that all streamline con-
toured configurations had generally lower drag than the axisymmetric model
throughout the range of test conditions. The configuration streamlined for
0.1 1ift coefficient showed the greatest improvement at low 1lift and had
reductions in drag coefficient up to approximately 0.007 as compared with
the configuration having the axisymmetric fuselage. Drag reductions were
generally greater at lifting conditions than at zero 1ift. The configura-
tion designed for 0.4 1lift coefficient did not improve the drag character-
istics appreciably except in a very limited range of Mach number and 1ift
coefficient near design. This configuration did have a higher lift-curve
slope and a more rearward aerodynamic center at supersonic speeds, however,
and had a shift in pitching moment which was in a direction to reduce drag
due to trim.
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INTRODUCTION .

The concept of shaping the fuselage of a sweptback-wing-—fuselage -
combination in such a way as to combine the curvature of the streamlines
over an infinite sweptback wing with the longitudinal area distribution
obtained from application of either the transonic area rule or the super-
sonic area rule was advanced in references 1 and 2, respectively. Experi-
mental dats are presented in these reports which show that this method of
fuselage shaping resulted in reductions in zero-lift pressure drag coef-
ficient significantly greater than those obtained through the use of axi-
symnetric application of either the transonic or supersonic area rules
alone.

The purpose of the present investigation was twofold: (1) to deter-
mine whether the drag improvements of the wing-fuselage configuration
having a fuselage contoured with the combination of the zero-lift stream-
line and area rule could be maintained at lifting conditions and (2) to
determine whether the drag characteristics of the wing-fuselage configu-
ration could be improved further at 1lifting conditions by utilizing a
streamline contour corresponding to a given 1lift coefficient. Accordingly,
tests were made in the Langley transonic blowdown tunnel through a range of
lift coefficients of sweptback-wing—fuselage configurations having fuse-
lages contoured in accordance with a combination of transonic area rule
and streamline shape designed for 1lift coefficients of 0, 0.1, and O.l4.
For purposes of comparison, the axisymmetrical-area-rule indented con-
figuration of reference 1 was tested through the same range of 1lift
coefficient.

The general wing-body configuration consisted of a sweptback wing
having a quarter-chord sweep of 45°, aspect ratio 4, taper ratio 0.6, and
NACA 65A006 airfoil sections in the stream direction. The Mach number was

varied from 0.8 to 1.3 at a Reynolds number of spproximately 3.0 X 106
based on the wing mean aerodynamic chord.

SYMBOLS

Cp drag coefficient, Drag

Cy, 1ift coefficient, Lift

. dCy,
Cr, lift-curve slope, e
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Pitching moment about
q,S¢

pltching-moment coefficient,

P - P,
pressure coefficient,

wing mean aerodynamic chord

wing chord

free-stream Mach number

body height from center line, in.

static pressure at a point on airfoil surface
free-stream static pressure

free-stream dynamic pressure, %p v 2

body radius
total wing area, 12.96 sq in.

free-stream velocity
component of V, normal to 0.5-chord line
component of V, parallel to 0.5-chord line

body width from center line in plane of wing, in.

distance measured from fuselage-nose leading edge parallel to
body center line, in.

distances measured normal to and parallel to sweep line of
infinite-span wing with origin at wing leading edge
(fig. 3), in.

angle of attack, deg

angle of sweep of the wing of infinite span, deg

free-stream density

ratio of specific heat at constant pressure to specific heat
at constant volume
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MODELS, APPARATUS, AND TESTS

Models

Four bodies of fineness ratio 6.7 were tested in combination with a
wing of aspect ratio 4, taper ratio 0.6, 45° sweepback of the quarter-
chord line, and NACA 65A006 airfoil sections parallel to the model center
line. The wing was mounted on the fuselage in the midwing position with
zero angle of incidence and zero dihedral. The ratio of body frontal area
to wing area was 0.136. The forebody of each of the fuselages was defined

by the relation r « x1/2 ana was of fineness ratio 3.0. The longitudi-

nal distribution of cross-sectional area was the same for all four config-
urations and is given in reference 1.

Axisymmetric design.- This configuration had a body which was
indented axisymmetrically to offset the volume of the wing according to
the transonic-area-rule principle (ref. 3). Body radii are given in ref-
erence 1 along with zero-lift drag data of the model tested without tran-
sition fixed by roughness strips.

Zero-1ift design.- Derivation of the zero-1ift design fuselage is

described in detail in reference 1 where zero-lift drag data are presented.
Also presented in reference 1 are the detailed dimensions and ordinates for
this configuration. It should be noted that the cross-sectional shape of
this fuselage was derived from an arbitrary redistribution of body volume
as required to maintain the longitudinal area distribution.

Lifting designs (Cp, = 0.1 and Cj = 0.4).- Sketches of the fuselages

designed for 1ift coefficients of 0.1 and 0.4 are presented in figure 1 and
photographs of the models are presented as figure 2. Unpublished experi-
mental surface pressures measured on an NACA 65A009 airfoil section at a
Mach number of about 0.7 (design Mach number =~ 1.0) and obtained in the
Langley 4- by 19-inch semiopen tunnel were used in conjunction with the
sweep of the 0.5-chord line in the calculation of the streamline shape over
the wing of infinite span. The effects of wing taper and the presence of
the wing tips and body on the pressures were not considered.

The following procedure was used to obtain the streamline shape. The
local resultant velocity at any point on the infinite-span wing was taken
to be the sum of the local velocity normal to the sweep line and the tan-
gential component of the free-stream velocity. The local velocity normal
to the sweep line V' was obtained from the two-dimensional pressure-

distribution dats by use of the relation
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: where My and Vy are the Mach number and velocity components of the
e free-stream flow normal to the sweep line and Cp 1s the two-dimensional

pressure coefficient. The tangential-velocity component
VT‘ =Vp =V, sin A was assumed to be constaent throughout the flow field;

\ thus, the lateral slope of the velocity vector at any poinﬁ is given by
ay! VT' VO sin A
ax' V' vl ]
2 Y 1 2eos? ) T
V, cos Ajl- (C £ M,cos“A + 1 -1
© (7 - 1)Mg2cos2A P27

V

where the subscript o denotes free-stream conditions and the prime
denotes local conditions at any point in the field. Hence, the lateral
displacement at any point in terms of the chord of the wing of infinite
span is .

o 1 (%)
%; = 917 d(%;) = tan A ~ =
, et}
2 ( Y v 2 7
1l - Cp £ M, cos A+ 1)
(v - l)MoacoszA e

L P S I SN Ty
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Thus, the surface streamline (and body) contour is given in terms of a
system of rectilinear axes normal to and parallel with the wing sweep line
as shown in figure 3.

T AR 2T

For the lifting cases, the streamlines on the upper and lower surfaces
- of the wing are not the same. The paths of the two surface streamlines are
such that there results a displacement of the streamlines at the wing
trailing edge. When the fuselage was shaped to conform to the different
shapes on the two surfaces of the wing, a shelf was formed at the trailing
edge of the wing in order to fair the streamlines to the general fuselage
plan form. For the present case, an arbitrary fairing was used. As con-
trasted with the arbitrary cross-sectional shape for the zero-lift design,
semi-elliptical cross-sectional shapes were used for the 1lifting designs on
both the top and bottom of the fuselages to obtain the streamline contours
in the fuselage sides (fig. 1) and the desired longitudinal cross-sectional
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area distribution. Ordinates for these fuselage configurations are pre-
sented in tables I and II.

Apparatus

The tests were made in the Langley transonic blowdown tunnel which
has a slotted test section with an octagonal cross-sectional shape meas-
uring 26 inches between flats. The models were supported by a three-
component internal strain-gage balance which was sting-mounted in the
tunnel. Force and moment data were recorded by photographing self-
balancing potentiometers. Base pressures were measured by inserting an
open-end tube through the center of the sting into an open section of the
balance. The pressure so measured was the average static pressure in the
annular opening around the sting in the plane of the model base. * All
pressure data were recorded by quick-response flight-type pressure
recorders.

Tests

The tests were made through a range of Mach number from 0.8 to 1.3

at Reynolds numbers ranging from 2.5 X lO6 to 3.0°X% lO6 based on the mean
aerodynamic chord of the wing. Data were obtained at angles of attack
from approximately O° to 129, and the measured angles were corrected for
sting and balance deflection due to aerodynamic load.

All the tests of the present investigation were made with roughness
strips on the fuselage forebody and on both surfaces of the wing near the
leading edge in order to eliminate the effects on the aerodynamic charac-
teristics of possible changes in the extent of laminar flow on the model.
The roughness strips consisted of 0.001- to 0.002-inch-diameter carborun-
dum particles blown to a uniform density on a strip of thinned shellac.
The strip on the fuselage was l/h inch wide and was located 10 percent of
the body length behind the nose. The strips on the wing were 1/8 inch
wide and were located at 10 percent of the local chord behind the wing
leading edge.

From previous tests of models of the same size in the Langley tran-
sonic blowdown tunnel, it appears that the results may be influenced by
tunnel-wall reflections through a range of Mach number between about 1.04
and sbout 1.18. No data are presented for this Mach number range. For
the present model-to-tunnel size ratio, reference U4 indicates that tunnel
boundary effects should be negligible at subsonic speeds.

The drag data measured at Mach numbers greater than 1.18 were cor-
rected for buoyancy effects resulting from longitudinal gradients in the
test section Mach number.
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RESULTS AND DISCUSSION

Lift and Pitching-Moment Comparison

The measured lift and pitching-moment coefficients are presented in
figures 4 and 5, respectively. A comparison of the slopes of the lift
coefficient against angle of attack and pitching-moment coefficient against
1lift coefficient are presented in figures 6 and 7. respectively. The
increment of the curves used to determine the slopes was between 1lift coef-
ficients of O and 0.2.

The lift-curve slope (fig. 6) did not change appreciably with varia-
tion of fuselage design with the exception of the design for a lift coef-
ficient of 0.4. The Cr, = 0.4 design exhibited significantly higher values
of CLa in the Mach number range between about 0.9 and about 1.25.

By comparing figure 5(4) with figures 5(a), 5(b), and 5(c), it is seen
that there is a shift in the pitching-moment coefficient of abcut 0.02 at
zero 1ift for the design for a 1ift coefficient of O0.4%. This shift in
zero-l1ift moment is in the direction to reduce the drag due to trim of the
configuration at moderate 1lift. There was no appreciable difference in
the pitching-moment characteristics of the other configurations. Figure 7
shows that, at subsonic speeds, the values of de/dCL are about the same
for all configurations. At supersonic speeds, however, the Cy = 0.4

design had a more rearward aerodynamic center than the other configurations
and hence a greater change in static margin in traversing from subsonic to
supersonic speeds.

Drag. Comparison

The drag polars for the individual configurations are presented in
figure 8. The drag data were adjusted to a condition of free-stream static
pressure at the model base. By superposition of the test results for the
different configurations, it was found that the general scatter of drag
data points obtained for each configuration was less than the differences
in mean drag between the configurations. The increments in drag coeffi-
cilents as obtained from the faired curves presented, therefore, are con-
sidered to be much more accurate than might be indicated by consideration
of the scatter of test points alone. In order to show a comparison of the
drag variations with Mach number at constant lift coefficients of 0, 0.2,
and 0.4, cross plots of the faired curves of figure 8 are presented in
figure 9.

Zero-lift drag.- The general zero-lift level of the subsonic drag
coefficients of the four configurations investigated is measurably greater
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than the estimated viscous drag of an equivalent flat plate with fully
turbulent flow. Results of an unpublished lnvestigation (obtained in the
lLangley low-turbulence pressure tunnel) of distributed three-dimensional
roughness particles of the type used in the present investigation to fix
transition indicate that the size of the roughness used was several times
greater than that required to fix transition. The increase in subsonic
drag coefficient over that of turbulent skin friction, therefore, is most
likely primarily caused by the drag of the roughness itself. Inasmuch as
the roughness strips used were carefully controlled in geometry and compo-
sition, it is believed that the measured differences in drag between the
various configurations are reliable. Several repeat tests also indicate
that the measured differences were not due to instrument malfunction or
blowing off of roughness particles by the airstream during the course of
the tests.

Inasmuch as the subsonic drag increments between the different con-
figurations are not due to changes in viscous drag, they must be due to
changes in pressure drag. These differences in pressure drag between the
various body contours are probably influenced by an interaction with the
boundary layer of localized shock waves which schlieren surveys showed to
exist around the fuselage at Mach numbers as low as 0.8.

These measured subsonic drag differences for the configurations with
artificially fixed transition suggested a reexamination of the results
obtained for two of the same configurations in reference 1. These config-
urations, the axisymmetric indented fuselage design and the zero-1ift
streamline-contoured fuselage design, were tested in reference 1 with
supposedly free transition., The recent 1nvestigation of the effects of
distributed three-dimensional roughness particles previously referred to
indicate that for the combination of model size and Reynolds number per
foot used in reference 1, surface roughness of the order of 0.0002 inch
would be sufficient to cause premature boundary-layer transition from
laminar to turbulent flow. It is extremely unlikely that the models of
reference 1 were tested with surfaces having this degree of smoothness so
that it appears that little, if any, laminar flow existed. In fact, the
general level of subsonic drag coefficlent of the models of reference 1
is approximately equal to the estimated viscous drag for fully turbulent
flow. A comparison of the difference in drag coefficient between the two
configurations, as obtained in the present tests, with the difference
obtained in reference 1 is presented in figure 10. The increments at both
subsonic and supersonic speeds were the same for both investigations.
This is a further indication that the variation in subsonic drag-
coefficient level between these two configurations is due to a difference
in pressure drag and not to variations in extent of laminar flow as was
supposed in reference 1.

The apparent reductions in drasg coefficient at zero lift afforded by
the design for a 1lift coefficient of 0.1 as compared with the zero-lift
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contoured design is not clearly understood. It appears remote that such
drag differences can be afforded by only the small difference in fuselage-
wing-juncture contour between these two configurations. The drag reduc-
tion may possibly be attributed to secondary effects produced by the pre-
viously noted differences in cross-sectional shape between these two
configurations.

The zero-lift drag of the design for a lift coefficient of 0.4 was
generally higher than that for the other streamline-contoured configura-
tions as might have been expected. These results provide an indication
of the possible penalty at zero lift which may result from attempts to
contour a fuselage to provide low drag at a specific 1lift coefficient
appreciably greater than zero.

Generally, it may be noted that all the streamline-contoured con-
figurations had significantly lower zero-lift drag than the axisymmetric
configuration. At the design Mach number M = 1.0, the zero-lift contour
afforded a reduction in drag coefficient of about 0.004 relative to the
axisymmetric-area-rule indented configuration. This reduction in drag
coefficient diminished to about 0.003 at M = 1.3. The 0.1-1ift-
coefficient design generally afforded the lowest zero-1ift drag coeffi-
clent level of all the configurations. As was mentioned previously, the
fact'that the 0.l-lift-coefficient design had lower drag than the zero-
1lift design at zero 1lift may possibly be associated with the difference
in cross-sectional shape. As previously pointed out, the O.4-1ift-
coefficient design had the highest zero-lift drag of all the streamlined
configurations tested.

It should be noted that the magnitude of drag reduction is influenced
by the ratio of fuselage frontal area to wing plan-form area. The success
of the streamline contouring depends on how well the fuselage aerodynami-
cally separates the two swept-wing panels. Hence, a decrease in relative
fuselage size would be expected to decrease the effectiveness of the
streamline contouring concept.

Drag at lifting conditions.- It may be noted from figure 9 that, rela-
tive to the axisymmetrical-area-rule configuration,(any reduction in drag
attained at zero 1ift due to streamline contouring was maintained or
increased in the moderate lift-coefficient range. The configuration
designed for (g = 0.1 showed generally the greatest improvement at low

1ift and produced reductions in drag coefficient up to about 0.007 as com-
pared with the axisymmetric configuration.

Except for a narrow range of Mach number and 1lift coefficient near
design, the O.4-lift-coefficient design generally had the highest drag of
the three streamline-contoured configurations tested. This result indi-
cates that designing for such a large 1ift coefficient msy be a question-
able procedure although it was previously indicated that the 0.4-1ift-
coefficient design would have a smaller trim drag at moderate 1lift.
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It should be pointed out that only a part of the drag reduction
indicated at lifting conditions for the various configurations resulted
from an improvement in "drag due to 1ift" characteristics. This is
especially true in the case of the 0.l-lift-coefficient design where
most of the drag reduction at 1lifting conditions can be accounted for by
the previocusly indicated reduction in drag at zero 1lift.

CONCLUDING REMARKS

An investigation has been made in the Langley transonic blowdown
tunnel at Mach numbers between 0.8 and 1.3 to determine the possible drag
reductions afforded at lifting conditions by contouring the fuselages of
a sweptback-wing-fuselage combination so that the wing-fuselage surface
Juncture conformed approximately to the surface streamline that would
exist over a wing of infinite span at a given 1ift coefficient. Fuselages
designed for 1lift coefficients of 0, 0.1, and 0.4 were investigated. The
results obtained from these configurations were compared with the results
from an axisymmetric fuselage configuration. The longitudinsal distribu-
tion of cross-sectional ares of the four configurations conformed to the
transonic area rule.

The results of the investigation indicated that significant drag
reductions can be obtained as a result of contouring the fuselage in such
a way as to satisfy the streamline shape in the wing-fuselage juncture.
Drag reductions due to the streamline contouring were generally greater
at 1ift than they were at zero lift. Of the configurations tested, the
design for a 1lift coefficient of 0.1 generally had the lowest drag in the
lift-coefficient range between 0 and 0.4 and gave reductions in drag
coefficient up to about 0.007 as compared with the configuration having
the axisymmetric fuselage. Except for a narrow range of Mach number and
1lift coefficient near design, the design for a 1lift coefficient of O.4

generally had the highest drag of the three streamline configurations
investigated.

The 1lift and pitching-moment characteristics of the four configura-
tions tested were essentially the same with the exception of the design
for a lift coefficient of 0.4 which exhibited a greater lift-curve
slope Cqm in the Mach number range between about 0.9 and 1.25 and more
negative values of pitching-moment slope de/dCL at the supersonic
Mach numbers. The design for a lift coefficient of 0.4 also exhibited a
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. shift in the pitching moment at zero 1lift ﬁhich was in the direction to
reduce the trim drag of the configuration.

o e TR

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., March 30, 1956.
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TABLE I.- ORDINATES OF BODY DESIGNED FOR Cp, = 0.1

andy cross-section is in the shape of an ellips;J

< i radius, Upper half Lower half
, in.
in. h, in. | w, in. | h, in. | w, in.
0.000 0.000
.010 .037
.040 .075
.090 112
.160 .150
.250 .187
1.000 375
1.500 459
2.000 .530
2.500 .592
3.000 .649
3.500 . 700
4.000 .740
4.500 .750
4.810 0.750 0.750 0.750 0.750
5.135 772 -726 -T37 759
5.385 STTh .702 .72k .751
5.760 LT3 .665 .705 .T3L
6.385 .780 624 697 .698
6.885 LTk 625 667 .698
7.260 .699 .630 .632 697
7.510 67% .626 615 684
7.885 634 614 .596 .653
8.260 .606 .598 .584 .621
8.635 :579 479 | .567 -591
9.010 565 .565 .565 .565
9.435 .5k2 5h2 542 542
10.000 .510 .510 .510 .510
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TABLE II.- ORDINATES OF BODY DESIGNED FOR Cj = 0.k

EBOdy cross-section is in the shape of an ellipse]

e 1
<, in radius, Upper half Lower half
in. h, in. |{w, in. | h, in. | w, in.
0.000 0.000
.010 037
.040 075
.090 112
.160 .150
. .250 .187
1.000 .375
1.500 459
- 2.000 .530
2.500 .592
3.000 .649
3.500 | . .700
4,000 .T40
k.500 .750
%.810 0.7480 | 0.7362 | 0.7480 | 0.7672
5.135 .7280 .6918 .7280 8485
5.385 .7230 .6266 .T230 8817
5.760 L7000 5784 . 7000 .8946
6.385 .6830 .5392 .6830 .8853
B 6.885 6530 | .5418 6530 .8826
¢ 7.260 6140 .5522 L6140 .8825
: 7.510 .5940 .5601 5940 .8575
i 7.885 .5780 .5708 .5780 TTT2
£ 8.260 .5840 .5788 .5840 .6623
‘ g 8.635 .5700 5790 5700 .5978
¢ 9.010 .5640 .5650 .5640 .5650
: 9.435 .5420 .5420 5420 .5420
§ 10.000 .5110 .5100 .5110 .5100
.
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Figure 6.~ Variation of lift-curve slope with Mach number for the four
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Figure T.- Variation of pitching-moment slope with Mach number for the
four configurations.
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(b) Wing body designed for Ci, = O
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